更多>>精华博文推荐
更多>>人气最旺专家

张甜甜

领域:岳塘新闻网

介绍:总结是应用写作的一种,是对已经做过的工作进行理性的思考。...

刘士萍

领域:中国企业新闻网

介绍:“亲戚的小孩比儿子小半岁,也在学编程,说起计数器、累加器、函数、二进制十进制这些专业知识,我儿子竟然都不知道。www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来

利来国际app
本站新公告www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来
rtp | 2019-03-20 | 阅读(837) | 评论(926)
;⑴观察患者病情变化;测量生命体征;⑵正确实施基础护理、专科护理与安全措施;⑶正确实施治疗、给药措施;⑷提供护理相关的健康指导。【阅读全文】
www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来
i9y | 2019-03-20 | 阅读(526) | 评论(427)
“杭州一些民办初中,对在全国性的编程大赛中拿到奖项的孩子,录取时候是有倾斜的。【阅读全文】
bi7 | 2019-03-20 | 阅读(496) | 评论(520)
例如拟《归园田居》的一首道:结庐在田野,悠然隔尘迹。【阅读全文】
vbs | 2019-03-20 | 阅读(860) | 评论(913)
(8)一个积极而乐观的人生态度这能让你对日复一日的工作保持积极和热情,不至于在茫茫人海迷失自我或悲伤失落。【阅读全文】
nu8 | 2019-03-20 | 阅读(453) | 评论(301)
”鹏鹏的妈妈则说随缘,“他有兴趣,就给他学,以后真能比赛出成绩最好,不行也不勉强。【阅读全文】
oqw | 2019-03-19 | 阅读(988) | 评论(106)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
fri | 2019-03-19 | 阅读(76) | 评论(680)
A2、(2016·高考全国Ⅰ卷文综政治·17)根据十二届全国人大常委会第十六次会议通过的全国人大常委会关于特赦部分服刑罪犯的决定,国家主席习近平2015年8月29日签署特赦令,对参加过抗日战争。【阅读全文】
7dj | 2019-03-19 | 阅读(178) | 评论(973)
PAGE考点48圆的一般方程要点阐述要点阐述圆的一般方程的定义(1)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其圆心为,半径为.(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示点.(3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F典型例题典型例题【例】已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程.②当PP1、PP2的斜率有一个不存在时,有x=4或x=6,这时点P的坐标是(4,3)或(6,9),它们都满足方程①.又P1(4,9)、P2(6,3)两点坐标也满足方程①,∴所求圆的方程为(x–5)2+(y–6)2=10.解法三:设P(x,y)是圆上任意一点,则|PP1|2+|PP2|2=|P1P2|2.(x–4)2+(y–9)2+(x–6)2+(y–3)2=(4–6)2+(9–3)2.化简,得x2+y2–10x–12y+51=0.即(x–5)2+(y–6)2=10为所求圆的方程.【秒杀技】一般地,以A(x1,y1),B(x2,y2)为直径的圆的方程是(x–x1)(x–x2)+(y–y1)(y–y2)=0,此结论被称为圆的直径式方程.此结论在解题时要注意灵活运用,可给解题带来许多方便.小试牛刀小试牛刀1.圆x2+y2+10x=0的圆心坐标和半径长分别是(  )A.(–5,0),5B.(5,0),5C.(0,–5),5D.(0,–5),25【答案】A【解析】因为x2+y2+10x=(x+5)2+y2–25=0,所以圆的方程为(x+5)2+y2=25.由圆的标准方程可知圆心为(–5,0),半径长为5.2.方程x2+y2+2ax–2y+a2+a=0表示圆,则实数a的取值范围是()A.a≤1B.a1C.a1D.0a1【答案】B【解析】由D2+E2–4F0,得(2a)2+(–2)2–4(a2+a)0,即4–4a0,【解题技巧】圆的一般方程必须满足D2+E2–4F0的条件,确定圆的一般方程,需要确定D、E、F3.已知圆x2+y2-2ax-2y+(a-1)2=0(0<a<1),则原点O在(  )A.圆内B.圆外C.圆上D.圆上或圆外【答案】B4.若圆x2+y2–2x–4y=0的圆心到直线x–y+a=0的距离为,则a的值为()A.–2或2B.或C.2或0D.–2或0【答案】C【解析】把圆x2+y2–2x–4y=0化为标准方程为(x–1)2+(y–2)2=5,故圆心坐标为(1,2),由圆心到直线x–y+a=0的距离为,得=,所以a=2,或a=0.5.已知定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围为________.【答案】eq\b\lc\(\rc\)(\a\vs4\al\co1(2,\f(9,4)))6.判断方程x2+y2-4mx+2my+20m【解析】解法一:由方程x2+y2-4mx+2my+20m可知D=-4m,E=2m,F=∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2,因此,当m=2时,D2+E2-4F=0,它表示一个点,当m≠2时,D2+E2-4F0,原方程表示圆的方程,此时,圆的圆心为(2m,-m),半径为r=eq\f(1,2)eq\r(D2+E2-4F)=eq\r(5)|m-2|.解法二:原方程可化为(x-2m)2+(y+m)2=5(m-2)2,因此,当m当m≠2时,原方程表示圆的方程.此时,圆的圆心为(2m,-m),半径为r=eq\r(5)|m-2|.【规律总结】(1)形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D2+E2-4F是否为正.若D2+E2-4F0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r=eq\r(5)(m-2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.考题速递考题速递1.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆的面积最大时,圆心坐标为(  )A.(-1,1)B.(1,-1)C.(-1,0)D.(0,-1)【答案】D【解析】r=eq\f(1,2)eq\r(k2+4-4k2)=eq\f(1,2)【阅读全文】
www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来,www.w66.com 利来
c7c | 2019-03-19 | 阅读(215) | 评论(79)
PAGE第1课时 等比数列的前n项和课后篇巩固探究                 A组1.已知数列{an}的通项公式是an=2n,Sn是数列{an}的前n项和,则S10等于(  )解析∵an+1an=2n+12n=2,∴S10=2(1-210)答案D2.在等比数列{an}中,a2=9,a5=243,则{an}的前4项和为(  )解析因为a5a2=27=q3,所以q=3,a1=a2q=3,S4答案B3.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则Snan=解析设公比为q,则q=a2于是a1+a1=,因此a1=2,于是Sn=21-12n1-12=41-12n,而答案D4.在14与之间插入n个数组成一个等比数列,若各项总和为778,则此数列的项数为(  解析设a1=14,an+2=,则Sn+2=14-解得q=-.所以an+2=14·-1解得n=3.故该数列共5项.答案B5.已知首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )====3-2an解析在等比数列{an}中,Sn=a1-anq1-答案D6.对于等比数列{an},若a1=5,q=2,Sn=35,则an=     .解析由Sn=a1-anq1-q答案207.在等比数列{an}中,设前n项和为Sn,若a3=2S2+1,a4=2S3+1,则公比q=    .解析因为a3=2S2+1,a4=2S3+1,两式相减,得a4-a3=2a3,即a4=3a3,所以q=a4答案38.数列12,24,38,…,n2解析∵Sn=12+222+Sn=122+223由①-②,得Sn=12+122+123∴Sn=2-12答案2-19.已知等比数列{an}满足a3=12,a8=,记其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若Sn=93,求n.解(1)设等比数列{an}的公比为q,则a3=所以an=a1qn-1=48·12(2)Sn=a1(1-由Sn=93,得961-12n=10.导学号04994046已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b(b≠1).(1)求数列{an}的通项公式;(2)若数列{an}满足bn=an·2n,求数列{bn}的前n项和Tn.解(1)因为方程ax2-3x+2=0的两根为x1=1,x2=b,可得a-3+2=0,ab2-3b+2=0(2)由(1)得bn=(2n-1)·2n,所以Tn=b1+b2+…+bn=1×2+3×22+…+(2n-1)·2n,①2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,②由①-②,得-Tn=1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2(2+22+23+…+2n)-(2n-1)·2n+1-2=2·2(1-2n)1-2-(2n-1)·2n+1-2=(3所以Tn=(2n-3)·2n+1+组1.等比数列{an}的前n项和为Sn,若S2n=3(a1+a3+…+a2n-1),a1a2a3=8,则Sn=++1解析显然q≠1,由已知,得a1(1-q整理,得q=2.因为a1a2a3=8,所以所以a2=2,从而a1=1.于是Sn=1-2n1-2答案A2.已知数列{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为(或解析由题意易知公比q≠1.由9S3=S6,得9·a1(1-所以1an所以其前5项和为S5=1×答案C3.在等比数列{an}中,a1+a2+…+a5=27,1a1+1a2+…+1a5A.±±解析设公比为q,则由已知可得a两式相除,得a12q4=9,即a32=9,所以a答案C4.若等比数列{an}的前n项和为Sn,且S1,S3,S2成等差数列,则{an}的公比q=    .解析由题意,得a1+(a1+a1q)=2(a1+a1q+a1q2),又a1≠0,q≠0,故q=-.答案-+322+423+解析设Sn=1+322+423+…+n2n-1+n+12n,则Sn=22所以Sn=3-n+3答案3-n6.若等比数列{an}的【阅读全文】
7rc | 2019-03-18 | 阅读(208) | 评论(85)
实用就好。【阅读全文】
vw6 | 2019-03-18 | 阅读(133) | 评论(871)
小结催化剂的探究步骤:探究出“一变”、“二不变”(1):称量反应前该物质的质量;(2):设计对比实验(控制变量),探究该物质能否改变反应速率;(3):反应结束后,经溶解、过滤、洗涤、洪干,再次称量,通过比较探究该物质反应前后的质量是否发生改变;(4):设计实验,探究该物质的化学性质反应前后是否发生改变(可将反应后该物质再加入到反应物中,看能否继续改变反应速率来设计)。【阅读全文】
qhd | 2019-03-18 | 阅读(649) | 评论(600)
外公的身子一半干一半湿是因为伞倾斜到我这边,他的身子一半暴露在雨中,被雨淋湿了。【阅读全文】
pbd | 2019-03-18 | 阅读(660) | 评论(518)
注意强调,解释B点及其上空气压大小大小,虽然B点上空是低压,B点是高压,但是是统一水平面而言。【阅读全文】
nuq | 2019-03-17 | 阅读(754) | 评论(529)
但无论哪一次变革都是时代的需求,这就要求广大语教师必须不断更新教育教学观念。【阅读全文】
tzv | 2019-03-17 | 阅读(550) | 评论(260)
牙齿的分化既提高了哺乳动物摄取食物的能力,又增强了对食物的消化能力。【阅读全文】
共5页

友情链接,当前时间:2019-03-20

利来国际w66备用 w66 利来娱乐国际 利来国际app旗舰厅 利来国际w66
利来国际w66平台 利来国际w66平台 国际利来旗舰厅 利来国际AG旗舰厅 www.w66.com
www.v66利来国际 利来网上娱乐 利来国际旗舰版 利来娱乐老牌 w66.com
利来娱乐国际 利来国际在线客服 w66利来娱乐公司 利来国际w66手机网页 利来娱乐网
静宁县| 定边县| 黄大仙区| 临猗县| 鄂尔多斯市| 嵊州市| 建水县| 普格县| 永寿县| 察雅县| 小金县| 富顺县| 峨边| 南乐县| 绥宁县| 鄯善县| 祁东县| 焉耆| 临夏市| 鄂托克旗| 威远县| 巴林左旗| 新田县| 和平县| 庆云县| 北票市| 淮阳县| 阿尔山市| 东源县| 丘北县| 无极县| 合阳县| 连城县| 彭州市| 莱芜市| 梧州市| 吴江市| 嫩江县| 灵丘县| 东乌| 武穴市| http://m.74400061.cn http://m.80591502.cn http://m.31567493.cn http://m.18215966.cn http://m.65136029.cn http://m.82682697.cn